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ABSTRACT

The response of semi-infinite ice floes to water waves is

analyzed for relatively deep water. If the floe submergence is

neglected it is found that a progressive wave is transmitted. The

stress produced by this transmitted wave is determined for various

floe thicknesses and incident wave lengths. When the submergence

is not neglected it is necessary to use a finite difference approach

to the solution. Such a solution is attempted and the results and

accompanying numerical problems are considered in detail.
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INTRODUCTION

This study continues the effort to analyze the effect of water

waves on ice floes. The previous study (Ref. I) dealt with finite

ice floes with negligible depth of submergence. In this work the

effect of water waves on semi-infinite ice floes with zero and finite

submergence depths is studied.

The first portion of the report is an analysis of the zero

submergence problem. The governing equations are established

and a closed-form expression for the stress produced by the trans-

mitted wave is obtained. This solution depends upon the roots of a

quintic equation, which involve the parameters of the incident

* wave as well as ice properties and floe thickness. This stress is

calculated for various floe thicknesses and incident wave lengths

assuming constant ice floe properties. A sample calculation is in-

cluded. Reflection and transmission coefficients are also evaluated

and discussed.

The finite submergence case is then analyzed. Attempts at an

analytical solution are discussed and due to the complexity of the

equations these are discarded.

Finally, a finite difference approach to the solution is used

to determine the stress in the floe near the leading edge. The

limitations of computer storage severely restrict the size of the

flow field under consideration but a definite indication to the stress

pattern is established.



SEMI-INFINITE PLATE NO SUBMERGENCE

Consi-er a semi-infinite elastic plate of thickness h float-

ing upon water of relatively infinite depth, as shown in Fig. 1.

If linearized theory is used then the free surface portion

of the flow field, Region 1, is given by the potential function

(1) l = (B e - i k x + Re i k x ) eky eirt

with

(2 ) - 1 - 1 y = 0 1 t

and therefore

2
(3) r = gk

whie re

III = local elevation of profile (ft.)

Jil I = incident wave amplitude (ft.)

L I  = incident wave length (ft.)

T 1  = incident wave period (sec.)

a = 2w/T I

k = 2w/L I

U = I g/0r

R reflection coefficient

B = iU

-2-
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The equation for the oscillation of a plate is

a4 1 2  a 212

(4) D - + ph - - p
ax at

where

112 =displacement of the plate

h 3 E
D =s flexural rigidity of the plate12(1_ 2)

h = plate thickness

Ps = mass density of plate

p = pressure exerted on the plate by the fluid
1

v = Poisson's ratio of the plate = --3
E = modulus of elasticity of the plate

Now if +2 is the potential function for Region 2 and if2

is of the form

ik x -), y iort

(5) +2 = A n e e e

then the pressure p as shown in Ref.. I is given by

()p = a+ [ y + g112 ]6 ) - P f T- ) Y = 2o

where pf is the fluid density.

If the plate displacement is equal to the water displacement

and the velocities correspond, then

-4-



812 j2 o I I

- = - =o or 1 - F ) Y=O

Thus, the plate displacement is

ik x -y iot

(7 1XA e Anxe Anye i-

(7) = X e n

where the X are five roots of the characteristic equation (9), whichn

is obtained by substituting (7) into (4)

(8) - I D B4 - ps ho Z + fgl-a2 ) Y= 0 = 0

But ik x iort
Oj2* = X A eA n e

-y y=0 n

therefore the characteristic equation is

5
(9) n + H(l-ak) n - Hk = 0n n

pfg Psh

where H -= a - p
Pf

and k = a-2/g for the incident wave.

The roots of the characteristic equation are X With a, b, c, dn

all greater than zero the X n may be written in the form
n

-5-



0 a positive real number

= a + bi X2 = a - bi

x = - c + di x 4 = - c - di

but since the potential function 2 must decay with increasing

y, x and X'4 are not admissible. The potential can be
3 42

written as

-ik x> y iX ix-X'ly =

(10) '2 = (Te o + A I e +A 2 e X2y)et

(-ix X-X oy)
Now e represents a progressive wave as x

approaches infinity and thus, the term T is related to the trans-

(ix Ix->xy) (-ix 2 x-x 2 y)
mission coefficient. The terms A e and A 2 e

are waves which decay both with increasing x and increasing y

Now for continuity along the line x = 0 the potential

functions and particle velocities must be identical so that

= '2 at x= 0

-- = -U-- at x 0

The plate has a free end at x = 0 so that the moment and shear

must be zero at that point, giving

(12) - = 0 at x , = 0 at x0
ax ax

-6-



Now (11) and (12) give four boundary conditions which are

sufficient to determine the four unknown coefficients R, T, A!

and A 2 .

If the subscript ( )l refers to the real part of a coefficient

and ( )2 refers to the imaginary part of a coefficient (T is not to

be confused with the period of the incident wave, T which is not

used explicitly in the analysis), then after considerable algebraic

manipulation it is found that

T I  = - 2-y A GU/J

T2  = 2y A FU/J

Il 3 -- [v-Y 4)T+ (63-64) 2

12 &- [36) T, -( 3 y) T 2 ]

A21  - [ 3 +y 4 ) T1 - (63 + 64 ) T 2 -

21 = - [(63+64)T 1 +( 3 + 4)T_]

R I = TI + AII + A 21

R2 T 2 + A12 + A22 U

where A All + iAl2 A 2  A 21 + iA22 etc. and

= = Ren , 6 Im(1

A = 'Y3 Y4 + 6364

A(I+y) -Y Y 4 " /I 'Y3 - 61 63

-7-



G = y 3 + Y 1 6 4 - 1 y'Y4

J =F 2 + G2

In order to find the relation between the transmitted, reflected

and input waves define E E = R R + T-T where the bar indi-

cates complex conjugate, then

(14) E E = R1
2 + A 2 + T1  +T 2

Upon substitution of the quantities T. and R. from (13) it is1 1

found that

(15) E E I 2A7 1+Y - 'a (_Y 4 -I -'Y-_'YI + Y/4)

U

+ YY 4 + YIY 3 + 61 63]

Now E E is a positive quantity, being a sum of squares of real
E E

numbers, therefore =--. exceeds unity. This is an apparent
U

violation of the equation of conservation of energy which apparently

would require E = U = RR + TT . But work has also been

done in permanently changing the wave length from L = 2 r/k

for the incident waves to L = 2 ir/ )X, for the transmitted waves0 0

and (15) expresses this.

Fig. 2 shows the variation of

_ (E E) 1/2 (R R) 11/ 2  (T T) 1 / 2

.......... P UT -
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with incident wave length and plate thickness.

The stress in the plate reaches a maximum value near the

leading edge and then decays to a slightly lower value given by the

amplitude of the transmitted wave. The peak stress is analogous

to a transient and the stress due to the transmitted wave is analogous

to a steady state value in the sense that it is independent of x

The transient stress S is found from the expression
x

S = (Clx2 + C 2
2  1/2

where
E hX

Clx - 2Y~rl02 (TP+ T2P)

Ix 2ylo(1-v2 11

E hX 35 0

C 2 x (-TI P 2 + T 2 P 1 )

where

P I = -l cos KoX + ebx(y l cos ax + 61 sin ax)

P 2  = " ysin x + ebx sin ax

and the units of S will be lb/ft2 per foot of incident wave amplitude.

The stress due to the transmitted wave S* is found by allowing

x to approach infinity in the preceding expressions

S* = C12 + C22) 1/ 2

where 3
E hX

s 0
C1 -0 (-TIcos x- T 2 sin X x)

-10-



C - Xo (T sin Xo x - T2 cos X x)

2 Zo-(l -v )

giving finally

9Eh X YAU
S_ - oj-_ I/2

8o

for v = 1/3.

The quantity S* for various incident wave lengths and plate

thicknesses is shown in Fig. 3 .

For comparison with the finite submergence case, the stress

amplitude Sx for an incident wave length of 10 feet and plate thick-

ness of 5 feet has been worked out in detail as shown in Fig. 4

As an illustrative example, suppose it is desired to find

the stress amplitude for a 15 foot thick floe at an incident wave

length of 100 feet with an incident wave amplitude of 6 inches.

From Fig. 3, S* for h = 15, L I = 100 is 112 lb/in2 therefore

the desired value of S* will be

S* 6 112 = 56 lb/in2

since the stress amplitude graph is normalized to a 1 foot amplitude.

-11-
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SEMI-INFINITE PLATE WITH FINITE SUBMERGENCE

We consider a semi-infinite elastic plate submerged in water

to a depth "a" below the mean water line of a train of incident

harmonic waves. The coordinate y is measured positive down-

ward from the mean water line and the coordinate x is measured

parallel to the mean water line from the leading edge of the plate

positive in the direction of incoming wave propagation (i. e. positive

into the plate).

The free surface portion of the flow field must obey equation

(2) of the previous section of this report. It is assumed that this

submerged edge of the plate perturbs a relatively small portion of

the flow field and therefore that as the distance from this area

increases, the general simple harmonic character of the incident,

reflected and transmitted waves is maintained.

Ursell (Ref. 2) has shown that if a normal velocity is pre-

scribed on part of a vertical plane (i. e. thin boundary) extending

from the surface then the two dimensional problem of determining

the motion on either side of the plane as well as beneath it can be

solved for the deep water case. The motion is determined by a

comparatively simple integral equation. At the lower edge of the

plane the velocity becomes infinite due to a mathematical singu-

larity of logarithmic type. Ursell obtains his solution by assuming

that the transmitted waves have the same wave length as the incident

waves.

-14-
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An attempt was made to modify Ursell's approach to include

the effect of the plate as well as the change in wave length of trans-

mitted waves. In so doing a very complicated set of simultaneous

integral equations is obtained. The kernels of these equations

involve the fifth order equation for the plate oscillation. The inte-

grals were found to be intractable and hence the analytical approach

was discarded in favor of a numerical means of solution.

Since no analytical solution was found for the plate with

finite submergence an approximate solution was attempted. The

coordinate system is shown in Fig. 5.

The incident waves are given by the potential function

(16) = ( iUekx + Reikx ) e - ky e i' t

The submerged edge of the plate is assumed to perturb a

relatively small portion of the flow field, therefore, at some

station AB where x = x I , the potential is

(17) §AB = iUe kx 1 + Re ') e -kye

Now as y increases 8§ vanishes, thus, for sufficiently large y

(18) 8BC) 0

Again for sufficiently large x = x the potential *CD which is

-17-



the asymptotic form of # given in equation (10) is assumed to

exist in the form

(19) kCD Te e 0 e

Along the boundary DE the equation of motion of the plate must

hold and this is given by

(20) a + H(-ak)]( 8  )y= + Hk (DE) =

(0 Eax 8 y /ya y=a 0

Along the submerged edge of the plate EF

8 §EF
(21) 7- = 0

since this edge does not move in the x direction. The free

surface condition along FA is analagous to equation (2)

(22) =~

V y) y =0

Since the plate has a free end at the point x = 0, y = a,

ax 8 y x
(23) y = a

y=a

-18-



The field equation is Laplace's Equation

(24) V 2 § = 0

which holds everywhere within A B C D E F.

There are now sufficient equations to determine R , and T.

The size of the grid I for a finite differencc solution of

the problem is unfortunately not arbitrary. The core storage

capacity of the presently available digital computer equipment

(IBM 7090) limits the size of the field considerably.

The following parameters are used in the computation

h = 5 ft.

E = 1.44 x 108 lb/ft2

S

V = 1/3

Pf = 1.025 gm/cm
3

Ps = 0.9 Pf

a = 4.5 feet

a = 1.Z5 ft.
4

Equal divisions of length I define the nodes in the free-

surface portion of the field. There are 10 nodes in the y-direction

and at most 8 in the x-direction. The field under the plate is a

semi-logarithmic distribution of nodes where the logarithmic scale

is in the direction of increasing x and the y divisions are I

apart as in the free-surface region. There are 16 nodes in the

* x-direction and 6 in the y-direction.

-19-



The equation for the x-divisions is

(25) X = log 27 - log 2T log 27 - log (27-m)

where 0 < m < 16 in unit steps.

In order to conserve computer storage and yet include as

much of the perturbed flow field as possible, the free-surface

portion of the field was stepped as shown in Fig. 5 .

Assuming a second order function for * then the field

equation can be written as

2 1 1,+1 +
=(+,) l+ *7 z + ya_+ Y13 + 4

2.1 21
(26)

where a and y and IN are defined in Fig. 6

Along the free surface FA the slope condition (?2) permits

elimination of the ficticious point "1" giving, since a = y = 1,

2 o1 - I 0
V §FA 77Z = l + 24 4+ 13 421

where the I's have the same relations to 1o as shown in Fig. 6

Along the lower boundaries AB, BC, CD Eqn. (24) the

field equation becomes respectively,

(28) 1 +41= 2? + §3 + 4 - 0o)

-20-
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where is given by (17)

(29) V iB G = a4a + - § 3 ( ay +

(3 0) V2 = 2 1 I I(~ +' I ) =o 0V§CD = a~a y) I -- 2"4 -a I() 7

Along the boundary DE the high order differential equation

is expressed in finite difference form using the scheme shown in

Fig. 7 .

Defining ZN = XN - x I and y' = y - 41 then, if

VN : ZN

y'= 0

and VN is a fourth order equation in x

(31) VN N +6 = M ZN

The constants M can be evaluated by curve fitting as before. Itn

is found that

(32) M4  = I VI - v2 V2 + v3 V3 - v4 V4 + v5 V5

whe re
I

v I  = 
z z 3 z 4 z 5

-22-
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V 2 3z5- Z 3~Z)(Z4 - Z3)(Z 3 - Z2 )
I

v3 Z 3 (Z 5 - Z 3 )(Z 4 - Z 3 )(Z 3 - Z)

I
4 z4 (z 5 - z 4 )(z 4 - z 3 )(z 4 - z2 )

v5  = z 5 (Zs_ z 4 )(z 5 - z 3 1 (z 5 - z2 )

Now using the field equation V 2 = 0 the ficticious points

I N in (31) can be eliminated. For example, at point "N"

V = (x N-x I +x+ N1) = FN

( 1 +

(XN -XN I)(XN+l XN) N

l §N +1

+ ..- PN+6 =0
.1 (XN+I-XN )(XN+- XN-1)

so that

1 § N-1

VN  = ( X N XNI)(XN+ - XN_)

(33) 4 (XN- - XN )(XN+l" XN)

1 §NN+1
+ N + 6 + ( X X ( X X

24(XN+ " X)(XN+ " XN-I I

-24-



Finally, equation (20) becomes

(34) 24 M4 + H(I-ak) VN + Hk§N = 0

Similar equations express the conditions at the free end (23).

Along the boundary EF using (21)

(35) 1- z 0

The system illustrated in Fig. 5 consists of 332 unknown

values of § where 40?n- = Re (1) and +2n = Im (1), plus four

additional unknowns: The transmission coefficient T = T 1 + i T2

and reflection coefficient R = R + iR 2 . There are 336 equations

in the system; 332 statements at node points and four additional

equations for the free-end conditions at x = 0.

The value of the stress amplitude S is found from thex

equation

2 $2 12
(36) S = s (S1 + )

where

S = Re e

axJ

a 8 1 2 i ot
S - Im -= e

E h
and s a z=

2(1-V

-25-



Values of the stress Sx are shown in Fig. 8, where the

corresponding values determined for the same plate without sub-

mergence are also shown.

In general the solution of the finite difference formulation

of the problem of non-zero submergence involves the following

steps:

1. Establish the finite difference grid and ide, ify the

nodes.

a. Choose I

b. Choose the semi-logarithmic law analagous to

equation (Z5) for the variation of x beneath the

plate.

2. Set-up the linear equations at each node. There will

be two equations at each node (except at the plate corner

E). One equation will be for the Real part of I and

the other for the imaginary part.

a. Use Eqn. (26) at each interior node.

b. Use Eqn. (27) along the boundary FA.

c. Use Eqn. (28) along the boundary AB.

d. Use Eqn. (29) along the boundary BC.

e. Use Eqn. (30) along the boundary CD.

f. Use Eqn. (34) along the boundary DE.

g. Use Eqn. (35) along the boundary EF.

h. At point E state equations (23) using M 2 and
M 3 from Eqn. (31).

-26-
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3. Band the matrix and solve. The computer routine

used for this report was "Linear Equation Solver of

Banded Matrices", SHARE Distribution Number 990

CORR/1490 F4RWLE4F from the SHARE library.

4. Using the solution for Re and Im determine

M from Eqn. (33), then finally the stress will be

given by Eqn. (36).

-ZS-



ANALYSIS OF RESULTS AND CONCLUSIONS

The interaction of progressive waves with a semi-infinite

ice floe has been investigated wherein the ice floe is considered

equivalent to an elastic sheet. In this investigation two approaches

have been used; neglect of the finite submergence of the floe and

consideration thereof. In the case of the former approach, a mathe-

matical method is developed wherein a closed form analytic solu-

tion for the ice floe response may be obtained. The results of the

mathematical analysis show that a portion of the incident wave

energy is reflected while some energy is transmitted beneath the

ice in the form of a progressive wave whose frequency is dependent

on both the characteristics of the ice and the incident wave length.

The partition of wave energy into transmitted and reflected energy

is represented by potential function coefficients denoted as trans-

mission and reflection coefficients. The variation of these coeffi-

cients as a function of incident wave length for a 5 foot thick floe

is shown in Figure Z.

Further, the absolute value of the bending stress in the ice

floe due to the transmitted wave is shown in Figure 3 as a function

of floe thickness and incident wave length.

A specific example showing the variation of the bending stress

with the distance from the free edge of the ice floe is shown in

*Figure 4. The parameters chosen for the calculation were an ice

thickness of 5 feet and an incident wave length of 10 feet (also a

-zg-



unity amplitude for the incident wave height). Wher, observing the

stress variations depicted in Figures 3 and 4 certain salient poifits

should be observed. First the stresses shown represent "absolute"

values. However, the variation of the ice response is harmonic

in time. Hence, at a given location in the ice, it is clear that the

stress values shown in these figures alternate between the positive

value shown and the negative of this value. Secondly, in referring

to Figure 4 which shows the stress variation as a function of

position from the free edge of the floe, it is important to realize

that the "transient" stress values (i.e. those values close to the

free edge) are within about 10 per cent of the "steady state" stress

values (at positions far removed from the free edge). Also note

that the transient effect exists for distances greater than 10 wave

lengths of the incident wave from the free edge. Although only one

specific example has been calculated for the transient response,

this example is important from a comparison standpoint with the

numerical example worked for the same floe but where the finite

submergence has been included.

Turning now to the numerical example, some comment on the

choice of parameters and the mathematics behind the results are in

order.

It is clear that the choice of an input wave length of 10 feet

and an ice thickness of 5 feet are physically unrealistic (Ref. 3). The

necessity for the choice of parameters is due to the computational

procedure that we have chosen and not to a limitation imposed by the

-30-



mathematical model. In order to include the transient effect of the

submerged edge of the floe, the finite difference grid should extend

several incident wave lengths in either direction from the edge of

the floe. Further, to decay the effect of the transient in the verti-

cal direction, the grid should extend several incident wave lengths

vertically downward from thz edge of the floe. The decay of the

transient in all cases may be shown to be of such a form that the

longer the incident wave length, the larger must be the region

investigated around the submerged edge of the floe. Conversely,

as the incident wave length becomes shorter, this region diminishes

in extent. Since the size of this region greatly influences the

number of grid nodal points investigated and hence the number

of simultaneous field and boundary equations (i. e. the size of the

solution matrix), it is clear that the solution matrix is of a minimum

size for a short wave length.

For the particular incident wave length chosen for the numeri-

cal investigation conducted in this report (L = 10 ft.), we obtained

a solution matrix corresponding to a total of 336 simultaneous

equations and unknowns which correspond to 166 grid nodal points.

The particular type of matrix involved in this problem is a banded

matrix with a band width of about 80. Such a matrix can be solved

by the IBM 7090 using core or immediate access storage. However,

this represents the practical limit of the immediate access storage.

• Hence, an increase in matrix size or equivalently, an increase in

input wave length would exceed this atorage which would then
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necessitate the use of tape units. Although such a computational

procedure is feasible, the computer run time could easily increase

by an order of magnitude or more from the run time using only

immediate access core storage. Unfortunately, we were limited

in this investigation to a small computer budget. Hence the problem

investigated was necessarily tailored so the resulting matrix

solution did not exceed core storage. In the event that the com-

puter run time could economically cease to be a governing criterion

then longer incident wave lengths and other ice floe thicknesses

could be investigated. We feel that this would be valuable from

several standpoints.

First, the influence of the incident wave length and ice floe

thickness on the ice floe response could better be understood, both

from a fundamental standpoint and in comparison to the neglect of

the finite floe submergence. Secondly, and of equal importance

mathematically, certain computational assumptions used in the

present analysis could be more fully investigated. These computa-

tional assumptions are outlined as follows:

1. In transforming the Laplacian field equations to finite dif-

ference form, second order central difference formulas were

developed. However, along the ice-fluid interface it was

necessary to switch to higher order forward differences for

the fourth order boundary condition. This technique should

be verified by increasing the order of the finite difference

formula used in the field equations to the same order as the
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boundary condition equations. Such an approach would in-

crease the width of the banding in the solution matrix and

hence necessitate the use of tape transfer in performing the

computer computation.

2. There was no check run on the validity of the choice of grid

size. Hence a computational run should be performed on

the basis of a smaller size grid. Again, such a process

would require the use of tape transfer.

3. Finally, the effect of the region size investigated and the

accuracy with which the computer satisfies the assemblage

of simultaneous equations should be ascertained.

The first two points, as well as the effect of region size,

can most simply be answered by performing multiple solutions;

varying certain parameters with each solution, and comparing

results in each case. For instance, in the case of the effect of field

size, all other parameters being fixed, the field could be increased

by varying amounts and the solution for each case compared. When

an optimum field size is reached, the solution at any point within the

region investigated should not further vary as the field size is

increased.

The accuracy of computer solution can only be checked by sub-

stituting the answers back into the original equations and investi-

gating the significance of the error between the computed equation

value and the input equation value. Such a procedure involves the
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analysis of solution stability and may be invescigated through the

use of known techniques.

However, the question raised as to the accuracy of solution

will only effect the quantative results of the present analysis. We

are, however, in a position to discuss qualitatively the effect of

finite submergence of the floe for the numerical example included

in this report. A complete knowledge of this effect must naturally

await a detailed analysis of the influence of input wave length and

floe thickness and an experimental substantiation of the mathe-

matical model used.

The significant qualitative results of the numerical example

worked, especially in comparison to the results obtained from the

zero submergence case, are listed below:

I. Comparing the stress amplitude variation in Figures 4 and

8 (zero submergence and finite submergence respectively),

it may be observed that the transient stress is about an order

of magnitude higher near the leading edge of the floe when

finite submergence is included. This result is not surprising

when it is considered that the barrier caused by the submerged

front of the floe severely alters the local flow pattern, which,

in turn, highly perturbs the local velocity characteristics

inducing a pressure peak close to the floe's leading edge.

However, the barrier also tends to greatly reflect the incident

wave energy which leaves less energy to be transmitted in the

form of progressive waves beneath the floe. Indeed, a
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comparison of Figures 4 and 8 te'nds to substantiate this in

that the "steady state" stress appears to be of a lower mag-

nitude in the case of finite submergence than when the

submergence is neglected.

2. The transition to the "steady state" response of the floe

appears to be much more rapid in the case of finite sub-

mergence. In fact, the transient condition appears to die

out within several wave lengths of the incident wave, indi-

cating that wave length conversion and energy reflection is

taking place very near the edge of the floe.

The above observations lead one to conclude that breakup of

the floe might well be a progressive process; initial edge fractures

which create new boundaries which, in turn, lead to new edge

fractures, etc. Moreover, and of prime importance, is the indi-

cation that the magnitude of the steady state stress is less in the

case of finite submergence. This implies the possibility that a

conservative estimate of the bending stresses in the floe may be

ubtained on the basis of the relatively simple zero submergence

approximation. The justification of this must naturally await more

refined and complete analysis.

In NESCO's opinion, it is important to further pursue the

mathematical investigation in the directions stated above. However,

* it is also very important to obtain direct experimental verification

of the mathematical model. Hence, due to the high computational
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costs attendant to a rigorous mathematical extension, we feel that

the next logical step in studying the response of ice floes to wave

excitation is to obtain direct experimental evidence via field obser-

vations. In particular, we urge that studies be made of ice floe

deflections as a function of time and location in the floe. A properly

designed study of this sort will yield the period of the waves present

in the area, the magnitude of stresses involved, their spatial

variation, and the dynamic strength characteristics of the ice.

Subsidiary studies should be conducted on the importance of floe

thickness variations and the range of variation of incident wave

lengths and wave amplitudes. A careful analysis of such studies

will then indicate the proper direction to proceed mathematically

and hence justify and minimize the expenses involved.

A detailed proposal of such an experimental study is presently

being prepared by NESCO. This proposal will be submitted in the

near future.
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LIST OF SYMBOLS

a depth of submergence

g acceleration of gravity

h floe thickness

k circular wave-number

I grid size in finite difference scheme

n summation index or exponent

p pressure exerted by fluid on plate

s stress factor

t time

v N factors in difference expression

x or x N dimension measured parallel to surface (positive
into floe)

y depth dimension (positive downward)

ZN incremental distance in x-direction

A constants in potential functionn

B related to incident wave amplitude

C n factors in stress expression

D modulus of rigidity of plate

E smodulus of elasticity of plate

E related to energy content of system

F, G, J factors in stress expressions

F N ficticious point in finite difference scheme

H factor in characteristic equation
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L °  transmitted wave length

L I  incident wave length

MN factor in characteristic equation

Pip P 2  factors in stress expression

R reflected energy factor

S* "steady state" stress amplitude

S stress amplitude at station xx

T incident energy factor

T I incident wave period

U incident wave amplitude factor

VN first derivative in y-direction along interface

N number of node in finite difference scheme

'V ratio of incident wave-number to progressive wave-number

n Re 3-) n (see definition of X)

SIm ( (see definition of X1 )

AY3 Y4 + 6 3 654

6 energy coefficient

Y1 I incident wave profile

In,1 I incident wave amplitude

T12 wave profile along interface

X 0 progressive wave-number

X I  complex root of characteristic equation

V Poisson's ratio for plate
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Icomplex potential function

'2N-I Re ( f2N-1)

10 2N Im ( 2N -1 )

p reflection coefficient

Ps mass density of plate

Pf mass density of fluid

acircular frequency

T transmission coefficient

V 2 Laplacian operator

(T) complex conjugate

( )l real part

( )2 imaginary part
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